MATH2050C Selected Solution to Assignment 8

Section 4.1

(9d). We use $\varepsilon-\delta$ definition. Consider

$$
\left|\frac{x^{2}-x+1}{x+1}-\frac{1}{2}\right|=\left|\frac{2 x^{2}-3 x+1}{2(x+1)}\right|=\left|\frac{2 x-1}{x+1}\right||x-1| .
$$

We make a first choice $\delta_{1}=1 / 2$. Then for $|x-1|<1 / 2$, that is, $1 / 2<x<3 / 2$. Then $|2 x-1| /|x+1| \leq 4 / 3$. Therefore, for $\delta=\min \left\{\delta_{1}, 3 \varepsilon / 4\right\}$, we have

$$
\left|\frac{x^{2}-x+1}{(x+1)-1 / 2}\right|<\frac{4}{3}|x-1|<\varepsilon
$$

for $x, 0<|x-1|<\delta$.
Or, we could use Sequential Criterion. Let $\lim _{n \rightarrow \infty} x_{n}=1$. By Limit Theorem $\lim _{n \rightarrow \infty}\left(x_{n}^{2}-\right.$ $\left.x_{n}+1\right)=1$ and $\lim _{n \rightarrow \infty}\left(x_{n}+1\right)=2$. Therefore,

$$
\lim _{n \rightarrow \infty} \frac{x_{n}^{2}-x_{n}+1}{x_{n}+1}=\frac{\lim _{n \rightarrow \infty}\left(x_{n}^{2}-x_{n}+1\right)}{\lim _{x \rightarrow \infty}\left(x_{n}+1\right)}=\frac{1}{2}
$$

(12d). We claim that $\lim _{x \rightarrow 0} \sin \left(1 / x^{2}\right)$ does not exist. Take the sequence $x_{n}=\sqrt{1 /(2 n \pi)}$ and $y_{n}=\sqrt{1 /(2 n \pi+\pi / 2)}, n \geq 1$. Both sequences tend to 0 as $n \rightarrow \infty$. As $\lim _{n \rightarrow \infty} \sin \left(1 / x_{n}^{2}\right)=0$ and $\lim _{n \rightarrow \infty} \sin \left(1 / y_{n}^{2}\right)=1$, they have different limit. We conclude that the limit of $\sin \left(1 / x^{2}\right)$ as $x \rightarrow 0$ does not exist.
(15). (a) We want to show $\lim _{x \rightarrow 0} f(x)=0$ where f is the function that is equal to x at rational x and 0 at irrational x. The desired conclusion follows from the observation $|f(x)| \leq|x|$ and $\lim _{x \rightarrow 0}|x|=0$ and the Squeeze Theorem.
(b) f has no limit at $x=c \neq 0$. Let $x_{n} \rightarrow c$ be a sequence of rational numbers. Clearly, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}=c$. But, take $y_{n} \rightarrow c$ be a sequence of irrational numbers, then $f\left(y_{n}\right)=0$, so $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=0$. From Sequential Criterion we draw the desired conclusion.

Section 4.2 no. $1 \mathrm{bc}, 11 \mathrm{~cd}, 12$.
(1b). Since the limit is taken among positive x only, this should be viewed as a right limit (see below). By Limit Theorem,

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}+2}{x^{2}-2}=\frac{\lim _{x \rightarrow 1^{+}}\left(x^{2}+2\right)}{\lim _{x \rightarrow 1^{+}}\left(x^{2}-2\right)}=\frac{3}{-1}=-3
$$

(11c). Let $x_{n}=1 /(2 n \pi) \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{sgn} \sin 1 / x_{n}=\lim _{n \rightarrow \infty} \operatorname{sgn} 0=0
$$

On the other hand, let $y_{n}=1 /(2 n \pi+\pi / 2) \rightarrow 0$ as $n \rightarrow \infty$. We have

$$
\lim _{n \rightarrow \infty} \operatorname{sgn} \sin 1 / y_{n}=\lim _{n \rightarrow \infty} \operatorname{sgn} 1=1
$$

We conclude from Sequential Criterion that the limit does not exist. (11d). Using the inequality

$$
\left|\sqrt{x} \sin 1 / x^{2}\right| \leq \sqrt{x}
$$

and the fact that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$, we conclude from Squeeze Theorem that

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \frac{1}{x^{2}}=0
$$

Supplementary Problems

1. Suppose that for a polynomial p and $c \in \mathbb{R}$, prove by the Limit Theorem (see next page) that $\lim _{x \rightarrow c} p(x)=p(c)$.
Solution. Using $\lim _{x \rightarrow c} x=c$ for all c, the product rule tells us that $\lim _{x \rightarrow c} x^{k}=$ $\left(\lim _{x \rightarrow c} x\right)\left(\lim _{x \rightarrow c} x\right) \cdots\left(\lim _{x \rightarrow c} x\right)=c^{k}(k$-times product). Hence

$$
\begin{aligned}
\lim _{x \rightarrow c} p(x) & =\lim _{x \rightarrow c}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \\
& =a_{0} \lim _{x \rightarrow c} 1+a_{1} \lim _{x \rightarrow c} x+\cdots+a_{n} \lim _{x \rightarrow c} x^{n} \\
& =a_{0}+a_{1} c+\cdots+a_{n} c^{n} \\
& =p(c) .
\end{aligned}
$$

2. Let f be defined on (a, b) possibly except $x_{0} \in(a, b)$. Show that $\lim _{x \rightarrow x_{0}}|f(x)|=|L|$ whenever $\lim _{x \rightarrow x_{0}} f(x)=L$.
Solution. It follows immediately from the triangle inequality $||f(x)|-|L|| \leq|f(x)-L|$.
3. Let f be defined on (a, b) possibly except $x_{0} \in(a, b)$. Suppose that $\lim _{x \rightarrow x_{0}} f(x)=L$ for some L. Show that $\lim _{x \rightarrow x_{0}} \sqrt{f(x)}=\sqrt{L}$ provided $f \geq 0$ on (a, b). Suggestion: Consider $L>0$ and $L=0$ separately.

Solution. First, assume $L>0$. Given $\varepsilon=L / 2>0$, there is some δ_{1} such that $|f(x)-L| \leq$ $L / 2$ for $0<\left|x-x_{0}\right|<\delta_{1}$. In particular, it implies that $f(x) \geq L / 2$ for $0<\left|x-x_{0}\right|<\delta_{1}$. Now,

$$
\left|\sqrt{f(x)}-L^{1 / 2}\right|=\frac{|f(x)-L|}{\sqrt{f(x)}+L^{1 / 2}} \leq \frac{1}{(L / 2)^{1 / 2}+L^{1 / 2}} \times|f(x)-L|
$$

for $0<\left|x-x_{0}\right|<\delta_{1}$. For $\varepsilon>0$, there is δ_{2} such that $|f(x)-L|<\varepsilon \times\left[(L / 2)^{1 / 2}+L^{1 / 2}\right]$ for $x, 0<\left|x-x_{0}\right|<\delta_{2}$. If we take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then

$$
\left|\sqrt{f(x)}-L^{1 / 2}\right|<\frac{1}{(L / 2)^{1 / 2}+L^{1 / 2}} \times|f(x)-L|<\varepsilon, \quad \forall x, 0<\left|x-x_{0}\right|<\delta
$$

done.
Next, $L=0$. Given $\varepsilon>0$, there is some δ such that $|f(x)|<\varepsilon^{2}$ for all $x, 0<\left|x-x_{0}\right|<\delta$. It follows that $|\sqrt{f(x)}-0|=\sqrt{f(x)}<\varepsilon$ for $x, 0<\left|x-x_{0}\right|<\delta$, done.
4. Let f be function defined on (a, b) except possibly at $x_{0} \in(a, b)$. It is has a right hand limit at x_{0} if there exists some L such that for all $\varepsilon>0$, there exists some $\delta>0$ such that $|f(x)-L|<\varepsilon$ for all $x \in\left(x_{0}, x_{0}+\delta\right) \cap(a, b)$. Denote it by $L=\lim _{x \rightarrow x_{0}^{+}} f(x)$. Similarly we define the left hand limit of f at x_{0} and denote it by $\lim _{x \rightarrow x_{0}^{-}} f(x)$. Show that $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if both one-sided limits exist and are equal.

Solution. \Rightarrow. When $\lim _{x \rightarrow x_{0}} f(x)=L$, for $\varepsilon>0$, there is some δ such that $|f(x)-L|<\varepsilon$ for $0<\left|x-x_{0}\right|<\delta, x \in(a, b)$. Certainly it means $|f(x)-L|<\varepsilon$ for $x \in\left(x_{0}, x_{0}+\delta\right), x \in$
$\left(x_{0}, b\right)$, and $x \in\left(x_{0}-\delta, x_{0}\right), x \in\left(a, x_{0}\right)$. In other words, both one-sided limits exist and equal.
\Rightarrow. Let $L=\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)$. For $\varepsilon>0$, there exists δ_{1} such that $|f(x)-L|<\varepsilon$ for $x \in\left(x_{0}, x_{0}+\delta_{1}\right), x \in\left(x_{0}, b\right)$. On the other hand, there exists δ_{2} such that $|f(x)-L|<\varepsilon$ for $x \in\left(x_{0}-\delta_{2}, x_{0}\right), x \in\left(a, x_{0}\right)$. Therefore, by taking $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, $|f(x)-L|<\varepsilon$ for all $x \in(a, b), 0<\left|x-x_{0}\right|<\delta$, that is, $\lim _{x \rightarrow x_{0}} f(x)=L$.

